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Abstract

As a core cognitive skill that enables the
transferability of information across do-
mains, analogical reasoning has been exten-
sively studied for both humans and compu-
tational models. However, while cognitive
theories of analogy often focus on narra-
tives and study the distinction between sur-
face, relational, and system similarities, ex-
isting work in natural language processing
has a narrower focus as far as relational
analogies between word pairs. This gap
brings a natural question: can state-of-the-
art large language models (LLMs) detect
system analogies between narratives? To
gain insight into this question and extend
word-based relational analogies to relational
system analogies, we devise a comprehen-
sive computational framework that opera-
tionalizes dominant theories of analogy, us-
ing narrative elements to create surface and
system mappings. Leveraging the inter-
play between these mappings, we create a
binary task and benchmark for Analogical
Reasoning on Narratives (ARN), covering
four categories of far (cross-domain)/near
(within-domain) analogies and disanalo-
gies. We show that while all LLMs can
largely recognize near analogies, even the
largest ones struggle with far analogies in a
zero-shot setting, with GPT4.0 scoring be-
low random. Guiding the models through
solved examples and Chain-of-Thought rea-
soning enhances their analogical reasoning
ability. Yet, since even in the few-shot set-
ting, the best model only performs halfway
between random and humans, ARN opens
exciting directions for computational ana-
logical reasoners.

1 Introduction

Analogical reasoning is a core cognitive skill
unique to humans (Penn et al., 2008; Hofstadter,

2001), defined as the ability to perceive and uti-
lize the similarities between situations or events
based on (systems of) relations rather than sur-
face similarities (Holyoak, 2012; Gentner et al.,
2012). The dichotomy between relational and sur-
face similarity is illustrated in Figure 1: while the
narratives () and N overlap in terms of characters,
locations, and actions (surface similarity), they fail
to create a system of relational correspondences
and thus are disanalogous as shown by their high-
level message. Meanwhile, () and A are dissimilar
on the surface while forming a coherent relational
system of correspondences through the high-level
message: no pain, no gain. Mappings based on
systems of relations (system mappings) have pri-
ority over independent relations (Gentner et al.,
1993). Further, depending on whether the corre-
sponding situations/events share the same domain
or not, analogies and disanalogies can be qualified
as near or far (Gentner, 1983).

Analogy enables creative inferences, expla-
nations, and generalization of knowledge and
has been used for scientific inventions (Dunbar
and Klahr, 2012), solving problems (Gick and
Holyoak, 1980), and policy-making (Houghton,
1998). It has also been the subject of cogni-
tive theories and studies about humans for com-
mon processes, such as retrieval of memories
(Wharton et al., 1994) and problem-solving (Gick
and Holyoak, 1980), mostly leveraging narratives
as their experimental medium (e.g., Gentner and
Toupin, 1986; Gentner et al., 1993; Wharton et al.,
1994), given their multi-tiered nature and poten-
tial for abstraction. However, these studies focus
on humans or models expecting well-structured
inputs (Lu et al., 2022), are small-scale (Ichien
et al., 2020, Table 5), and involve manually cu-
rated narratives, lacking an indication of how they
can be applied to create scalable benchmarks for
evaluating computational models. Nevertheless,
borrowing from narratology theories (Mani, 2013;
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Figure 1: Analogical reasoning over narratives
(ARN): a binary task of distinguishing between anal-
ogous narrative A and distractor N for the query nar-
rative (). Here, A represents a far analogous narrative
(forming a relational system mapping) to ), while N
is a near disanalogy (having only surface similarities).

Gardner, 2003), elements of narratives may enable
analogical theories to be scaled and formalized
as computational frameworks and corresponding
benchmarks; however, this avenue has not been
explored to date.

Meanwhile, analogical reasoning has also been
relatively popular in natural language processing
(NLP), typically framed as an intelligence test
for models compared against humans. So-called
word-based, proportional analogies of the form
(A: B : C: D) (eg., Mikolov et al., 2013a,b;
Gladkova et al., 2016; Ushio et al., 2021) are of-
ten used to measure the potential of word embed-
dings and language models in terms of analogi-
cal reasoning. Recent studies (Webb et al., 2023)
show a strong ability of state-of-the-art (SOTA)
large language models (LLMs) to discover propor-
tional word analogies, though this skill degrades
with higher complexity (Wijesiriwardene et al.,
2023) or associative phrasing of the input (Steven-
son et al., 2023). Shifting toward more com-
plex settings, narrative-based analogy benchmarks
that involve system mappings rather than simple
word-based relational mappings, and are aligned
with cognitive theories have been rarely con-
sidered (Nagarajah et al., 2022; Wijesiriwardene
etal., 2023), with limitations in scope and general-

izability. Thus, we note a significant gap between
the expressivity of cognitive theories of analo-
gies and the present analogical reasoning bench-
marks in NLP. Specifically, existing computational
frameworks seldom include analogy over narra-
tives and do not provide a formalization of key
concepts such as system mappings and near/far
analogs. Consequently, the benchmarks used to
evaluate SOTA models do not provide the abil-
ity for systematic exploration of the sensitivity of
model performance to different analogical cate-
gories beyond word-level relations.

This gap brings a natural question: can state-
of-the-art LLMs detect system analogies between
narratives? 'To gain insight into this question, we
make three contributions:

1. A comprehensive theory-grounded frame-
work, formalized in three steps: extracting
narrative elements, establishing surface and
system mappings that extend simple rela-
tional mappings, and inferring (dis)analogies.
This framework operationalizes the link be-
tween existing analogical and narratology
theories, ultimately resulting in a binary
question-answering (QA) task.

2. A novel benchmark for Analogical
Reasoning over Narratives (ARN) con-
taining 1.1k triples of query narratives,
analogies, and distractors. Building on the
underlying framework, ARN contains four
balanced data partitions, each characterized
by the query narratives’ semantic distances
to its (dis)analogous narratives.

3. A comprehensive study of SOTA LLMs on
the four partitions of ARN in both zero-
and few-shot regimes. Our experiments
shed light on the ability of LLMs to dis-
tinguish surface and system similarities with
and without human guidance.

Our experiments show a clear gap between
SOTA LLMs and humans, especially in detect-
ing far analogies. To support further research, we
make the ARN benchmark publicly available at
https://bit.ly/3xVTjbL.

2 Related Work

We review existing theoretical frameworks of
analogies and narrative elements that provide the


https://bit.ly/3xVTjbL

foundation upon which we construct our frame-
work. Then, we survey analogical reasoning
benchmarks and compare them to ours, ARN.

Analogy frameworks. Many categorizations
exist for analogies, with a common distinction
between surface and relational (system) map-
pings (e.g., Halford, 1992; Gentner and Rat-
termann, 1991; Gentner, 1982; Premack, 1983).
Gentner (1983)’s Structural Mapping Engine
(SME) defines domains and situations as sys-
tems of objects, object attributes, and relations
between objects, and distinguishes between map-
pings formed based on each. SME defines analo-
gies as mappings based on relations rather than ob-
jects (attributes), prioritizing interconnected sys-
tems of mappings across domains (system map-
pings). Similarly, Holyoak and Thagard (1996)
distinguish between three mapping categories of
increasing complexity: attribute, relational, and
system. Each mapping category can be formalized
using a propositional representation with predi-
cates (e.g., Mentor of) and filler subjects (e.g.,
Kim, Emily). Aligned with both frameworks, we
categorize mappings into: surface mappings cov-
ering all categories of lower-order mappings (e.g.,
based on objects and object attributes), and sys-
tem of relational mappings (system mappings)
that create a coherent system of correspondences
across two situations.

System mappings form analogies, having a
higher priority over other mappings (Gentner,
1983; Holyoak and Thagard, 1996); yet, they can
co-exist with surface mappings. Surface mappings
decrease the cognitive load for recognizing system
mappings since they create within-domain (near)
analogies, also known as literal similarity (Gen-
tner, 1983). Cross-domain (far) analogies, not
forming surface mappings, are more challenging
to identify (Alexieva and Hristova, 2017; Green
etal., 2006, 2008, 2010), promote relational think-
ing (Vendetti et al., 2014), and are seen as more
sound when making arguments (Gentner et al.,
1993). Conversely, the sole existence of surface
mappings yields near disanalogies or mere ap-
pearance, while the absence of both surface and
system mappings is a far disanalogy, or dis-
similarity (Gentner, 1983). While the distinction
between near and far (dis)analogies is common
in popular cognitive psychology (CogPsy) frame-
works, it is unclear how to operationalize them at
scale for narratives, a gap we bridge in this paper.

Narrative frameworks. To understand what
may form surface and system mappings in narra-
tives, we review frameworks that describe narra-
tives through their key elements. Bal (2017) distill
four narrative elements: actors, events, time, and
location. Mani (2013) distinguish between char-
acters, time, and plot. Building upon these cate-
gorizations, Vossen et al. (2021) expand the scope
to include sequentiality and focalizer in addition
to events and characters. More comprehensive
and more widely adopted, Gardner (2003) con-
sider characters, plot, theme, setting, point of
view, and style. To our knowledge, no prior work
has leveraged such elements to infer surface and
system similarities across narratives. We base our
categorization of elements on categories of Gard-
ner (2003), given its comprehensiveness, to form
surface and system mappings, inferring analogies
and disanalogies across narratives.

Analogical reasoning benchmarks. For both
models and humans, evaluating analogical reason-
ing as an intelligence test (Hesse, 1965; Mitchell,
2021) is often posed as a word-based proportional
task (A : B :: C' : D); having Happy : Sad ::
C : D, and asking to infer the missing Angry :
Calm or Calm given Happy : Sad :: Angry :
D. Proportional analogy benchmarks (e.g., Tur-
ney et al., 2003; Jurgens et al., 2012; Mikolov
et al., 2013a,b,c; Gao et al., 2014; Gladkova et al.,
2016; Czinczoll et al., 2022; Kotchian and Sim-
mons, 2012; Tutors) differ in scale (up to thou-
sands of samples), number of relations (between
one and few dozens), and domains (general do-
main or science). Depending on the context,
SOTA LLMs perform worse than humans (Col-
lier et al., 2023; Mitchell et al., 2023), or outper-
form humans (which might be artifacts of train-
ing data; Lewis and Mitchell, 2024) in word-based
analogy tasks; however, they fail to perform well
in story analogies (Webb et al., 2023). Notably,
while cognitive theories of analogy often focus on
narratives and study the distinction between sur-
face, relational, and system similarities, existing
work in NLP has a narrower focus as far as analo-
gies between word pairs. In this study, we extend
the focus from word-based relational analogies to
relational system analogies in narratives.
Meanwhile, focusing on the limited studies of
matching, retrieving, or completing more com-
plex analogies in narratives in CogPsy (Ichien
et al., 2020): Wharton et al. (1994) develop 14
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Figure 2: Our proposed framework for evaluating analogical reasoning on narratives that culminates in ARN: 1.
We start by extracting elements of narratives; 2. We then match narratives based on similarities of their extracted
elements, creating corresponding mappings; 3. Based on the combinations of mentioned mappings and given the
precedence of system mappings, pairs of narratives in four categories of far/near analogies and far/near distractors
are organized to create the ARN benchmark to evaluate LLMs’ analogical reasoning in distinct scenarios.

sets of four stories with different themes and
events, used to compare human analogies between
themes and events; Wijesiriwardene et al. (2023)
study analogies in stories using negation, entail-
ment, and explanations, using available datasets
for each; Gentner and Toupin (1986) study the ef-
fect of systematicity and surface similarity of nar-
ratives’ characters on analogical reasoning with
54 narratives; Gick and Holyoak (1980) study
analogical reasoning in problem-solving and as-
sess the effect of similarities in problems and so-
lutions separately. These tasks consider narra-
tive analogies formed by humans, are thus lim-
ited in size (dozens of samples), and do not ex-
ploit the richness of the frameworks on narra-
tive elements. Although large-scale story cor-
pora exist (e.g., Mostafazadeh et al., 2016; Storks
etal., 2021; Andrus et al., 2022), analogies are ex-
tremely scarce in free texts (Sultan and Shahaf,
2022), and these resources are not adequate for
evaluating analogical reasoning (Wijesiriwardene
et al., 2023) since they do not consider the theo-
retical dimensions of analogical reasoning from a
CogPsy perspective, which is a gap we cover in
this study. Most similar to our work, Nagarajah
et al. (2022) formalize six cognitively-inspired di-
mensions of analogical reasoning over hundreds of
Aesop’s fables. However, while these dimensions
can be mapped to our framework, their fine gran-
ularity limits their application to the set of fables
they are devised for. Instead, we formulate a com-
prehensive framework that formalizes analogies
and disanalogies by using narrative elements from
narratology. This framework explicitly connects
to the CogPsy theoretical dimensions of analogical

reasoning frameworks, resulting in the inception
of the first extensive, theory-grounded benchmark
for analogical reasoning within narratives. Con-
currently to our work, Jiayang et al. (2023) focus
on analogies in narratives by providing a large-
scale benchmark built on top of existing resources;
however, they focus specifically on the distinction
between surface and relational similarities. We go
one step further by covering system mappings and
the possible interactions between near/far analo-
gies and distractors to paint a more accurate pic-
ture of models’ analogical reasoning abilities.

3 ARN Framework

Inspired by analogical reasoning frameworks in
CogPsy (e.g., Wharton et al., 1994; Gentner et al.,
1993), we formulate analogical reasoning over
narratives as a task where input consists of a
query narrative () and two candidate narratives,
A and N (see Figure 1). The goal is to select
the narrative A that is analogous to () rather than
the disanalogous one N, based on system map-
pings. We frame it as a binary classification task
to enable an unambiguous evaluation of the ana-
logical reasoning abilities of models and humans
(Frank, 2023). We realize this task through a com-
positional framework with three components (Fig-
ure 2): 1. extraction of elements of narratives,
such as characters, actions, and high-level mes-
sages (see Section 3.1); 2. formation of surface
and system mappings based on those elements
(see Section 3.2); 3. task formulation, by defining
(dis)analogies based on the mappings and parti-
tioning the data points according to their semantic
distance to the query narratives (see Section 3.3).



3.1 Elements of Narratives

Following prior narratology research (Gardner,
2003; Mani, 2013; Vossen et al., 2021; Bal, 2017),
we consider a narrative as a piece of text that has
six conceptual elements illustrated in Figure 2:
characters, relationships, character actions, char-
acter goals, location, and proverbial or high-level
messages.! To maintain generalizability in vari-
ous narrative contexts, we opted for the simplest
intuitive intensional definitions for each element
to avoid constraining applicability and overly nar-
rowing the scope. Moreover, both in constructing
the framework and its operationalization (see Sec-
tion 4.1), we utilized examples alongside defini-
tions for ease of use and to mitigate confusion.

Characters. Characters are the agents involved
in narratives, including people, fictional charac-
ters, and animals. Characters can be referred to by
proper names or roles, and are common elements
of narratology in the literature acting as protago-
nists (Mani, 2013; Vossen et al., 2021; Bal, 2017).
Figure 2 shows an example in which Emily and
Kim are the characters of the narrative.

Relationships. Characters in the narrative can
have different types of relationships between
themselves, such as mentorship, friendship, and
kinship. We consider relationships between char-
acters to be an essential factor of the narrative
plot (Mani, 2013), as characters do not exist in iso-
lation. An instance of a relationship between char-
acters is Kim being Emily’s mentor in Figure 2.

Character actions. Within a narrative, charac-
ter actions are pivotal as they form the plot of the
story, which unfolds through time (Mani, 2013).
Example actions that build up the plot of a narra-
tive are presented in Figure 2: training, crossing
the finish line, and claiming the medal.

Character goals. The goals of the characters
drive what they do throughout the narrative. Even
more, the narrative is structured around how char-
acters approach their goals and what they do to
accomplish them (known as the conflict; Gardner,
2003). An example would be Emily’s goal to fin-
ish a marathon in Figure 2.

!The style of narratives can, in principle, also be extracted
and utilized to derive analogies, typically referred to as lan-
guage style matching (LSM; Ireland and Pennebaker, 2010).
Yet, they fall outside the scope of this study, where we focus
on short narratives with a uniform writing style.

Location. This element refers to the setting of
the narrative, as the place or event where it is tak-
ing place (Bal, 2017). While the location is of-
ten explicitly mentioned in the narrative, it can
also be implied. In the narrative presented in Fig-
ure 2, both the event and location are presented:
marathon and Boston, respectively.

Proverb. We take the proverbial or high-level
message of a narrative as an instantiation of its
overarching theme (Gardner, 2003), which encap-
sulates individual elements of narratives into a co-
herent idea that the writer wants to convey. More
formally, proverbs are short sentences containing
wisdom, truth, morals, and traditional views in a
metaphorical form (Mieder, 1993). For instance,
query narrative () in Figure 1 is associated with
the proverb: no pain, no gain.

3.2 Mappings between Narratives

We leverage narrative elements to derive surface
and system mappings (Gentner, 1983). We follow
Gentner (1983) and Holyoak and Thagard (1996)
that define the order of mappings based on the
level of complexity of the arguments involved.

Surface mappings. If the mappings created be-
tween elements of two narratives are based on en-
tities (e.g., characters), entities’ attributes (e.g.,
characters’ actions), or surface relations (e.g., the
relationship between two characters), we consider
them to be surface mappings, since they are based
on the isolated similarity of narrative elements
rather than systematic correspondences between
the entirety of narratives.

System mappings. Unlike surface mappings
that focus on similarities between independent el-
ements, system mappings are formed by intercon-
nected correspondences of relations across two
narratives (Gentner, 1983). This system of cor-
respondences can be characterized and formed by
leveraging narratives’ proverbs (Wijesiriwardene
et al., 2023); hence, two narratives with the same
proverb are connected by system mappings. Sim-
ilar to the moral dimensions of Nagarajah et al.
(2022), proverbs provide an abstract summary of
the causal structure of a narrative, acting as medi-
ators for the transition between two analogs.

3.3 Task Definition

Inference of (dis)analogies. We consider pairs
of narratives that form system mappings as anal-
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Figure 3: Interplay between surface and system sim-
ilarities and analogical categories following Gentner
(1983) and Holyoak and Thagard (1996).

ogous and the rest as disanalogous. As shown in
Figure 3 and similar to Gentner (1983), we cate-
gorize analogies into far (cross-domain) analogies
(analogical relatedness) that are more challenging
to recognize and near (within-domain) analogies
(literal similarity) that are more obvious. Within
our framework, far analogies are formed between
narrative pairs that form system mappings with-
out surface mappings, while near analogies are
formed when system mappings are accompanied
by surface mappings. Surface mappings make
the narratives semantically closer, while narratives
that only form system mappings are semantically
far from each other. Conversely, pairs of narratives
that do not form system mappings will be regarded
as disanalogies. We leverage the extent of surface
mappings to distinguish near and far disanalogies
(see Figure 3). Specifically, far disanalogies (dis-
similarities) exist between narratives having none
or few surface mappings, while near disanalogies
(mere appearance) have many surface mappings.

Task formulation and partitioning. Our bi-
nary task is formed by coupling an analogous
(A) and disanalogous (V) narrative, as candi-
date analogies for the same query narrative ().
Here, the formal distinction between near and far
(dis)analogies enables a controlled setup of the rel-
ative distances between (), A) and (Q), N). We di-
vide the task into four salience-based partitions
of far/near analogies facing far/near disanalogies
(see Figure 2), with an expectation that these par-
titions will affect the performance of reasoning
models. For brevity, we refer to each combination
by the salience of analogies and distractors, e.g.,
(far, near) for far analogies facing near distrac-
tors. Note that the notion of near/far analogies and
near/far disanalogies, how they might face each
other, and the corresponding entailments, are in-
dependent of their operationalization in different

domains. We have borrowed these categorizations
and distinctions broadly from analogical reason-
ing research in CogPsy (see Section 2), and they
can be applied to any other domain too.

3.4 Generalizability of ARN to Narrative
Analogies

The purpose of ARN is to provide a generalizable
framework to study analogical reasoning in narra-
tives grounded in narratology and analogical rea-
soning in CogPsy research. The provided set of el-
ements is universal in narratives (Gardner, 2003):
entities’ attributes or surface relations, proverbs as
overarching messages of narratives, together with
their corresponding surface and system mappings,
can be broadly found in any narrative. This uni-
versality makes ARN an adequate framework to
describe other existing datasets. To illustrate this
point, we describe how two existing benchmarks
for narrative analogies can be mapped to the el-
ements of ARN. StoryAnalogy (Jiayang et al.,
2023) uses characters, actions, and relationships
of narratives to represent and distinguish between
entity and relational similarities while not cov-
ering higher-order mappings of analogical mes-
sages. The entity and relational elements of Sto-
ryAnalogy directly correspond to the elements in
ARN, whereas higher-order elements and map-
pings, such as proverbs, are not present in this
dataset. Similarly, Nagarajah et al. (2022) capture
structural similarities between Aesop’s fables con-
cerning animal characters, actions, and morals that
can be mapped to the elements in our frameworks,
i.e., characters, actions, and proverbs. In terms of
analogical mappings, they consider six categories
of Shallow and Deep Attribute, Relational, Event,
Structural, and Moral analogies. Moral analo-
gies fall under system mappings in our framework,
while others, being more focused on the surface
similarities, can be mapped to specific mappings
that we define based on characters, relationships,
actions, goals, and locations — e.g., Event analo-
gies to surface mappings based on actions — all of
which fall under surface mappings. While certain
scenarios might require further adaptations in the
operationalization of the framework, we expect
that the three-tier structure of the ARN frame-
work to be used as the basis for both existing
and future tasks, as the underlying concepts of
surface/system mappings, far/near (dis)analogies,
and the four partitions covering the interplay be-



Element Examples

Characters teacher, student, speaker, Kelly, Kim, John,
driver, judge, painter, wife, neighbor

Relations friend, sibling, seller-buyer, manager-
employee, roommate, classmate, coworker

Actions dating, eating food, borrowing money, at-
tacking enemy, rejecting tasks, being happy

Goals to borrow money without paying it back,
be prepared for unexpected problems during
cross-country driving trips, to have more rest
and be happier

Locations work, river, graduation, home, garden, bed,
hospital, company, wedding, dealership

Proverbs There’s no accounting for tastes, You are
never too old to learn, It’s no use crying over
spilt milk

Table 1: Examples of narratives’ elements across the

ARN benchmark.

tween them are well grounded in theory and gen-
eralizable across domains and contexts.

4 ARN Benchmark

In this section, we describe the realization of
the framework in Section 3 as a benchmark for
Analogical Reasoning over Narratives (ARN).
Without loss of generality, we use narratives from
the ePiC crowdsourced dataset (Ghosh and Srivas-
tava, 2022) that consists of 2,500 short narratives
(on average 4-8 sentences) annotated with 250 cor-
responding proverbs (10 narratives per proverb).
We chose the ePiC dataset because of its system-
atic annotation of proverbs and the wide range of
topics that it covers, allowing for the extraction of
diverse elements with corresponding mappings.

In Section 4.1, we explain how we extract ele-
ments from the narratives in ePiC. The mappings
between these elements are formed by quantify-
ing their similarity across pairs of narratives (see
Section 4.2). The formed surface mappings serve
as a basis to find distractors (see Section 4.3),
whereas the system mappings form correspond-
ing analogies (see Section 4.4). The ARN bench-
mark consists of (Q), A, N) triples, pairing analo-
gies A and their corresponding distractors N for
the same query narrative (). The semantic simi-
larity between @ and A, and between @ and N,
are defined by using the number of formed sur-
face mappings. The statistics and quality analysis
of ARN are presented in Section 4.5. For more
details about the involved preprocessing steps and
examples, refer to Appendix A.

4.1 Extracting Narrative Elements

A key benefit of the ePiC dataset is the already an-
notated proverbs associated with each narrative.?
Table 3 in the Appendix provides examples of
narratives alongside their proverbs. We extract
the other elements of a narrative using an LLM
(GPT3.5; OpenAl, 2022) denoted by llm(c,n) for
extracting element c from a narrative n. More con-
cretely, we explicitly prompt the LLM, asking it
to extract the element, ¢, from the provided narra-
tive, n, returning a Python List object. We opted to
utilize GPT3.5 for this task to save both time and
money, given its high accuracy in simple informa-
tion extraction tasks (Wei et al., 2023). Sample ex-
tracted elements from various narratives are shown
in Table 1, which demonstrate the diversity of the
subjects covered in the ePiC dataset. Across all
narratives, on average, we extracted 4.55 actions
(SD = 1.90), 2.44 goals (SD = 1.46), 2.59 char-
acters (SD = 0.96), 1.71 relations (SD = 1.16),
and 3.90 locations (SD = 3.67). After evaluat-
ing the extracted elements by a graduate student
who was instructed to check whether the extracted
elements were present in a subset of 100 random
narratives, the precision of above 94% was ob-
served across all elements. We focus on precision
in this pilot study since created mappings between
two narratives based on a certain element do not
require identical elements. Additional details are
provided in Section C.1.

4.2 Forming Mappings

We approach forming system mappings and sur-
face mappings differently. As the proverbs in
the ePiC dataset form a closed set, where each
narrative is associated with exactly one proverb,
we form system mappings between narratives that
have (nearly) identical proverbs through automatic
matching. The remaining five elements may con-
sist of multiple values (e.g., multiple actions in
a plot), each with an arbitrary phrasing. There-
fore, the similarity between those elements forms
a continuum rather than a dichotomy which was
the case with proverbs. Inspired by the context-
aware characteristics of Transformers (Vaswani
et al., 2017) rendering them strong at capturing
surface similarities in isolation (e.g., between ac-
tions of two narratives), we estimate the semantic
similarity between the values for element c in two
narratives n; and ny with the cosine similarity of

>We do not use span annotations in the ePiC dataset.



sentence BERT (all-mpnet-base-v2; Reimers and
Gurevych, 2019) encoding of those values:

sim(nq, ne, c) = cos(sbert(llm(c,nq)),
sbert(llm(e,m2)))

Here, the element ¢ comes from the set C =
{characters, relationships, goals,locations,
actions}. A surface mapping between n; and no
for element c is formed when sim(ni, ne,c) > t,
where ¢ is a manually defined threshold. Note that
the short narratives we focus on in these studies
allow us to look at mappings based on each narra-
tive element broadly and report whether a mapping
exists or not. However, in long narratives, it might
be necessary to focus on more fine-grained asso-
ciations and per element, distinguish between dif-
ferent element items and their corresponding map-
pings across narratives.

4.3 Selecting Distractors

To gather distractors, first, all pairs of narratives
that create surface mappings as extracted in Sec-
tion 4.2 are retrieved, and the pairs with the same
proverbial messages are removed to ensure that the
pairs are disanalogous. The retrieved pairs are cat-
egorized into far and near disanalogies based on
the number of surface mapping types they contain
(we consider narratives that have at least three sur-
face mappings as near and less than three as far).
This step yields m = 548 pairs of query narra-
tives and distractors in the ARN dataset: P =

{(Q17 Nl)a (Q27 N2)7 ey (Qm7 N’m)}
4.4 Selecting & Generating Analogies

The narratives sharing the same proverb in the
ePiC dataset are semantically far from each other
by design. We, thus, leverage this property to es-
tablish far analogies between pairs of narratives
that share the same proverb. To guarantee low sur-
face similarity, for each query narrative (); in P,
we select the narrative with the same proverb that
is semantically the farthest from (Q; (using sen-
tence BERT; Reimers and Gurevych, 2019; and
cosine similarity) as a far analogy.

Near analogies are formed between pairs of nar-
ratives that form both surface and system map-
pings, and narratives associated with the same
proverb in ePiC do not meet this requirement. To
generate near analogies for a query narrative @);
in P, we use a hybrid approach, utilizing both the
abilities of LLMs (GPT3.5) and humans. First, we
prompt GPT3.5 to generate seed narratives, given

restrictions on the proverbial message that the gen-
erated narrative should reflect and the narrative el-
ements it should mention. Then, upon an observa-
tion that GPT3.5 does not generate narratives with
given proverbs consistently, authors inspected the
generated narratives and edited their final versions
manually to ensure high quality. More details are
provided in Section C.4.

4.5 Benchmark Statistics & Quality

The final ARN benchmark consists of 1096
triples of query narratives, distractors, and analo-
gies. ARN has 294 far disanalogy pairs and
254 near disanalogy pairs, each creating triples
with both a far analogous narrative and a near
analogous narrative to the query narratives, which
makes the total size of the dataset balanced equally
between far and near analogies.

All the triples in the dataset were manually in-
vestigated by the first and the last author to remove
or revise the ones with possible ambiguities. There
were less than 30 triples that needed revisions or
were completely removed. Further, to ensure the
fairness of the proposed task and the quality of the
ARN dataset as a realization of this task, we ran
experiments to measure human performance. Two
research assistants were instructed (find instruc-
tions at https://bit.1ly/48QFUyA) to iden-
tify the analogous narratives in ARN for 120 data
points (over 10%) of the dataset consisting of 30
samples for each combination of far/near analo-
gies and far/near distractors. The mean accuracy
of the participants in the last row of Table 2 shows
a high consensus between the perceived system
mappings of the participants and our benchmark.
Moreover, the Cohen Kappa IAA (McHugh, 2012)
score between the annotators on this task was
0.865, demonstrating high agreement. By a man-
ual inspection, disagreements were mostly caused
by wrong predictions by one of the participants.
We did not see any trends between disagreements
and data attributes (e.g., whether it is the far analo-
gies or near analogies causing disagreements).

5 Experiments

We evaluate the analogical reasoning abilities of
language models over narratives in ARN us-
ing two settings.® First, we report on their au-

3We did not find a difference between the models’ per-
formance on all data points and data points where annotators
had an agreement on.


https://bit.ly/48QFUyA

tonomous (Radford et al., 2019) analogical rea-
soning abilities to assess the emergent abilities of
LLMs (Wei et al., 2022a) and the latent analog-
ical reasoning abilities they might have obtained
during their training (see Section 5.1). Follow-
ing a zero-shot formulation similar to Figure 1,
we provide the model with the query narrative
and the two candidate narratives, asking for the
best analogical match to the query narrative. Ask-
ing for the most similar narrative yielded simi-
lar results (see Section D.3). We evaluate the
autonomous analogical reasoning abilities of six
LLMs: GPT3.5 (OpenAl, 2022), GPT4.0 (Ope-
nAl et al., 2024), UnifiedQA (Khashabi et al.,
2020), Llama-2 (Touvron et al., 2023), FlanT5
(Chung et al., 2024), and Macaw (Tafjord and
Clark, 2021) using deterministic hyperparameters
(Temperature = 0). We also evaluate sentence
BERT (SBERT, all-mpnet-base-v2; Reimers and
Gurevych, 2019) by picking the narrative with a
higher cosine similarity to the query narrative as
a baseline. Additionally, in a more guided sce-
nario, we experiment with a few-shot (in-context
learning; Brown et al., 2020) setting to enhance
models’ abilities with solved demonstrations (see
Section 5.2). We evaluate Llama-2, GPT3.5, and
GPT4.0 because of their in-context learning abil-
ities and long context windows. Solved demon-
strations are chosen randomly, and performance is
reported as the average on three runs. For more
details about the experimental setup and prompts,
refer to Appendix B and Appendix C, respectively.

5.1 Autonomous Analogical Reasoning

How does analogical reasoning of models com-
pare to humans? In Table 2, we observed that
models are not as good as humans at distinguish-
ing analogies from distractors (57 vs 96%). On
near analogies, the humans’ average performance
was 97.9%, whereas the models’ performance av-
eraged 75.0%, which is halfway between random
and human performance. Focusing merely on se-
mantic similarity (using SBERT) already yielded
a good performance in this setting (77.9%) which
confirms the general similarity understanding of
language models. Intuitively, the human-LLM gap
was wider in solving far analogies where analogies
have little surface similarity to query narratives.
Although far analogies were slightly more difficult
for humans, as evident in the small drop in perfor-
mance, the drop was significant in LLMs. While

Task Partition (near, far) | (near, near) | (far, far) | (far, near) | Avg.
SBERT 84.3 71.5 12.6 1.00 423
GPT3.5 88.1 81.3 50.4 21.7 60.3
GPT4.0 94.0 92.5 571 29.1 68.1
UnifiedQA-L 43.2 49.1 47.2 50.5 47.5
UnifiedQA-3B 66.4 68.4 47.3 44.4 56.6
UnifiedQA-11B 60.7 61.2 54.8 74.6 62.8
Llama-2-7B 63.4 58.0 50.1 43.1 53.7
Llama-2-13B 80.9 81.4 44.5 354 60.5
FlanT5-L 84.5 80.3 414 14.4 55.1
FlanT5-x1 78.9 68.3 44.7 21.1 53.2
FlanT5-xx1 89.9 81.3 51.1 35.6 64.4
Macaw-11B 88.0 84.6 42.1 35.8 62.6
Avg. | 769 | 732 | 453 | 339 | 573
human | 986 | 972 | 968 | 914 | 960

Table 2: Accuracy (with a random baseline of 50%) of
tested LLMs in zero-shot setting, on ARN in four cat-
egories of far/near analogies facing far/near disanalo-
gies, e.g., (near, far) indicates the setting where near
analogies are alongside far disanalogies. Boldfaced
numbers in each partition show the best-performing
model in that partition.

humans’ average performance was 94.1%, mod-
els only achieved 39.6% on average (worse than
random performance) when solving far analogies.
Similarly, we also observed that in both near and
far analogies, as distractors get semantically more
similar to the query narratives (far — near distrac-
tor), both LLMs’ and humans’ performance drop,
with LLMs experiencing more notable drops. The
most competitive model, GPT4.0, performed close
to humans on near analogies; however, its perfor-
mance was below random in far analogies. The
relatively low performance of SOTA models un-
derlines the challenging nature of analogical rea-
soning, even for the most capable LLMs.

How does the relative distance between the
analogies and distractors affect models’ per-
formance? Comparing the performance of the
models in different partitions of ARN, we ob-
served the following patterns. All models per-
formed well in choosing the near analogy over the
far disanalogy (76.9%), i.e., cases where analo-
gies form surface mappings on top of system map-
pings and distractors do not form any mappings
with the query narratives. Facing two candidates
with similar surface similarity (near-near or far-
far), models’ performance dropped significantly.
Models scored 73.2% on average in a (near, near)
setting which shows that models recognize system
mappings in the presence of surface mappings,
even though the distractor also forms surface map-
pings with the query narrative. Models performed
much worse in the (far, far) setting (scoring only



45.3%), which shows their disability to recognize
system mappings in the absence of surface map-
pings. This observation was further emphasized
by the most challenging partition, where models
needed to prioritize far analogies over near dis-
tractors, as models failed to prioritize system map-
pings over surface mappings (scoring 33.9%), re-
gardless of their prompt instructions specifically
asking for system mappings. Note that although
solving examples in all partitions of the data re-
quires analogical reasoning, the reasoning pattern
specifically involved in each partition can be sub-
stituted by certain heuristics (e.g., the reasoner can
achieve great scores by choosing the dissimilar
narrative in the [far, near] condition without in-
volving analogical reasoning). We run our experi-
ments completely isolated from each other, which
makes the active development of such heuristics
highly unlikely. However, it would be an interest-
ing research direction to study the heuristics that
models might use in analogical reasoning.

How do models’ analogical reasoning abili-
ties compare to one another? As expected,
the best-performing model was GPT4.0, with an
average performance of 68.1%, and the worst-
performing model was SBERT, with an average
performance of 42.3%. GPT4’s performance was
in line with prior findings about analogical reason-
ing being one of the emergent abilities of LLMs
(Webb et al., 2023; Wei et al., 2022a); however,
its performance on ARN was still halfway be-
tween random and human performance. Mean-
while, the poor performance of SBERT was ex-
pected since it relies on surface semantic similar-
ity between narratives, which makes it perform
relatively well on recognizing near analogies but
reaches only 1% when prioritizing far analogies.
While generally, we saw that larger models per-
form better in the first three partitions, we ob-
served that the best-performing model in the (far,
near) setting is UnifiedQA-11B, even outperform-
ing the GPT models with orders of magnitude
more parameters. We attribute this curious ob-
servation to the smaller and more structured (in-
struction) fine-tuning that UnifiedQA has under-
gone and its alignment with the binary question-
answering (QA) format of our task. To investi-
gate this observation further, we also evaluated
other QA models: FlanT5, Macaw, and smaller
UnifiedQA variants. Aligned with our hypothesis,
We observed that the other QA models also per-

form relatively well, scoring on par or better than
the much larger foundational models: GPT3.5,
GPT4.0, and Llama-2, on the (far, near) partition.

UnifiedQA-11B
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Figure 4: GPT4.0 and UnifiedQA-11B’s performance
grouped jointly by the type of analogies and distractors.

Which surface mappings are more distracting
for models? We further studied the distracting
effect of each narrative element on the analogi-
cal reasoning abilities of the two best-performing
models, GPT4.0 and UnifiedQA-11B. Figure 4
demonstrates the performance of models when
distractors from each narrative element were ex-
cluded in the experiments, which we consider to
be a proxy for the distraction effect of each narra-
tive element — if excluding narrative elements c;
from the distractor sampling leads to higher per-
formance compared to excluding cs, we infer that
that c; has a higher distracting effect compared
to ca. For GPT4.0 (and all other models except
UnifiedQA; see trends for other models in Sec-
tion D.2), the aggregated distracting effect of all
elements was stronger than individual elements,
demonstrating the distinct effect of each element.
Among the different elements, mappings based on
actions led to the most effective distractors both
when detecting far and near analogies. In con-
trast, for UnifiedQA-11B, the aggregated effect of
all surface mappings was not the most distract-
ing, especially in far analogies where the model
had the highest performance when all types of dis-
tractors were included. This observation, along-
side the model having the highest performance in
far analogies across all models, shows the model’s
higher robustness for analogical reasoning, where
it may ignore and even benefit from distracting
surface mappings formed with disanalogies.

Error analysis. Based on our observations on
the free-text rationales and predictions by GPT4.0,
the explanations generated by models were indeed
based on high-level messages. However, these ex-
planations could be incorrect in different ways that
we iterate on some of the more salient ones:



e The rationale was correct, while the prediction
was incorrect. In the first example in Table 6 in
the Appendix, the explanation was aligned with
the correct choice, but the model predicted the
second narrative by mistake.

e The provided explanation followed the main
theme of the narratives and was aligned with the
keywords of the query narrative and the chosen
narrative. However, the explanation failed to fo-
cus on the high-level message of the query nar-
rative. In the second example shown in Table 6
in the Appendix, the prediction was made based
on narratives’ keywords. However, the high-
level message that the correct answer is based
on was not recognized by the model.

e The rationale captured the high-level message
of the query narrative and the chosen narrative
but disregarded the connection between the two
narratives, i.e., the fact that a mapping should be
formed between narratives. In the last example
in Table 6 in the Appendix, the explanation and
the gathered high-level message were aligned
with the chosen narrative but did not hold true
in the query narrative.

5.2 Guided Analogical Reasoning
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Figure 5: Performance of Llama-2, GPT3.5, and
GPT4.0 on ARN where {0,2,4,6} randomly chosen
solved demonstrations from both far and near analo-
gies were shown to the model as hints. Demonstrations
were provided both as normally solved demonstrations
and Chain-of-Thought reasoning, denoted as CoT.

Does providing solved demonstrations im-
prove analogical reasoning? A natural follow-
up question is whether the performance of LLMs
can be enhanced by guiding them through solved
demonstrations in comparison to a zero-shot set-

ting. The performance of different LLMs in a
few-shot setting is demonstrated in Figure 5 de-
noted by X signs, alongside their performance in a
zero-shot setting where the number of demonstra-
tions is set to zero. When models were provided
with solved demonstrations, their near-analogy
skills degraded, whereas their far-analogy perfor-
mance increased compared to the zero-shot set-
ting. GPT4.0 was the most stable model, with
its performance slightly increasing in far analo-
gies (especially with more demonstrations), with
a small drop in performance in near analogies.
The other models, GPT3.5 and Llama-2, had more
emphasized trends: they obtained a much larger
gain on far analogies (close to 10 absolute points)
while also losing much of their performance on
near analogies, though more demonstrations miti-
gated part of the loss. Overall, these results sug-
gest that the models do not efficiently leverage the
solved demonstrations, and surprisingly, their per-
formance in a few-shot setting is not necessarily
better than zero-shot setting. We leave a deeper in-
vestigation of the models’ behavior to future work
as they are beyond the scope of this paper.
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Figure 6: Performance of GPT3.5 on ARN where
{0,2,4,6} solved demonstrations from either far or
near analogies were shown to model to serve as hints.

How does the type of knowledge in solved
demonstrations influence their effectiveness?
The models may use solved demonstrations that
cover near or far analogies differentially, which
prompted us to test including either far or
near analogies in the provided demonstrations to
LLMs. Due to limitations in the expenses of us-
ing OpenAI’s API for GPT4.0, we conducted this
experiment on GPT3.5 and Llama-2. The result
of these experiments for GPT3.5 is presented in
Figure 6 (Llama-2 showed similar trends). Over-
all, we observed similar patterns when using either
near or far analogy demonstrations. Using either
near or far analogy demonstrations improved the
performance of models on detecting far analogies,



while both demonstration types were detrimental
to the models’ performance facing near analogies.
However, increasing the number of far analogy
demonstrations gradually improved the detection
of near analogies, which suggests that far analo-
gies can be slightly more helpful as demonstra-
tions. The advantage of using far analogies as
demonstrations can be explained by them being
independent of the domains or specific content of
analogs (Holyoak and Thagard, 1996).

How does step-by-step reasoning affect the per-
formance of the models? Solved demonstra-
tions of analogies hold a promise to enhance per-
formance while simultaneously being challenging
to process, which may have led to the counter ef-
fects on model performance in Figure 5. Inspired
by these observations, we investigated whether
guiding the model to reason step-by-step can en-
able it to perform better. We employed Chain-
of-Thought (CoT) prompting (Wei et al., 2022b),
given its positive impact on tasks that require com-
plex reasoning. We experimented with Llama-2,
GPT3.5, and GPT4.0 using {2,4,6} demonstra-
tions equally split between far and near analogies.
In this step-by-step procedure, the model was in-
structed to extract the proverbial message of each
narrative, followed by generating the final pre-
dictions. In general, CoT demonstrations helped
the models more than normal demonstrations (see
Figure 5). In near analogies, CoT demonstrations
still hurt the performance compared to the zero-
shot setting, although this negative effect was less
strong than in the normal few-shot setting. How-
ever, in far analogies, CoT demonstrations were
more beneficial than both the normal few-shot
demonstrations and no demonstrations (zero-shot
setting). Here, GPT-based models gained up to 30
absolute points compared to the zero-shot setting.
The models’ performance not improving for near
analogies is likely because the models are already
using surface similarity cues to solve the task, and
CoT’s reasoning chains are not recognized as criti-
cal by the models. The improvements in far analo-
gies are likely because models need to look for
elaborate mappings without surface similarity, and
CoT can facilitate this by breaking the task into
smaller, more manageable parts.

6 Conclusions and Future Work

This paper addressed a gap between analogical
reasoning theories in cognitive psychology and

analogical reasoning benchmarks in NLP. Our
proposed framework studies analogical reasoning
over narratives by a three-tier process of extract-
ing narrative elements following narratology, de-
vising corresponding mappings according to ana-
logical reasoning theories, and providing a formal
method for quantifying near/far analogical dis-
tances to create near/far analogies and disanalo-
gies. The framework provides a solid basis for
a binary QA task that enables a systematic study
of models’ analogical reasoning abilities across
various scenarios. Leveraging data on narratives
with high-level proverbial messages, we instanti-
ate the devised task with the Analogical Reason-
ing on Narratives (ARN) benchmark, consisting
of 1096 triples of query narratives, analogies, and
distractors. Evaluating multiple LLMs on ARN
in a zero-shot setting suggests that while mod-
els can recognize near analogies, their analogi-
cal reasoning performance degrades when detect-
ing far analogies, characterized by the absence
of surface mappings. This trend also holds for
GPT4.0, performing best on average but dropping
to a below-random performance on detecting far
analogies in a zero-shot setting. Few-shot prompt-
ing with Chain-of-Thought reasoning enhances
models’ performance in far analogies while being
detrimental to solving near analogies. Overall, we
show that LLMs’ analogical reasoning over narra-
tives lags behind humans, especially on far analo-
gies, which motivates further research on devising
computational analogical reasoners on narratives.

7 Limitations

While our framework showcases its potential
within a specific narrative benchmark, extend-
ing its application to diverse benchmarks and re-
sources might require additional adaptations. We
see additional development of benchmarks and
discussions around the analogical reasoning capa-
bilities of LLMs extremely useful as they promote
generalizability and reusability of models in ar-
bitrary domains. Further, although we used nar-
rative elements to form mappings, alternative ap-
proaches like using elements inspired by problem-
solving can be explored (Gick and Holyoak,
1980). Finally, going beyond LLMs, consider-
ing other methods inspired by CogPsy and neuro-
symbolic models might offer valuable insights into
a more diverse set of models and their analogical
reasoning on narratives.
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A Data Collection Details

As we use the ePiC dataset (Ghosh and Srivastava,
2022) as our narrative database, there are certain
pre-processings that needed to be done on the orig-
inal ePiC dataset before they would be ready for
the subsequent steps explained in Section 4. We
modify all the narratives that do not necessarily
reflect the proverb they are supposed to be asso-
ciated with by rewriting the narratives and keep-
ing the elements of the narratives intact.* We con-
sider two proverbs with the same meaning simi-
lar, and hence, the narratives associated with those
proverbs are, in turn, analogous. On this ground,
we consolidate proverbs and their corresponding
narratives that convey the same meaning into a sin-
gle representative proverb with its associated nar-
ratives, which results in the cleaned dataset having
223 unique proverbs and between 10 to 40 narra-
tives associated with each proverb.

In the process of forming the mappings between
lower-order elements, many similarities exist be-
tween the 2500 narratives we have in the orig-
inal dataset. We sort the similarities and only
keep the most meaningful ones by a manually
set threshold starting from the top. When fo-
cusing on the similarities based on a single ele-
ment ¢, we do this sorting based on sim(ny, ng, ¢)

“This happens since all the narratives are crowdsourced,

and limited supervision or structure has been in place when
gathering the narratives.

and sbert similarity. However, when focusing on
the similarities based on multiple elements where
multiple mappings are formed simultaneously, we
sort by the aggregated similarity of two narra-
tives based on elements C’ C C computed by
> cecr log(sim(ny, na, c)).

Table 3 provides examples of narratives along-
side their high-level proverbial messages. Fur-
ther, Table 4 demonstrates examples of the ARN
dataset covering four partitions mentioned in Sec-
tion 3.3.

B Experimental Details

The zero-shot and few-shot experiments on
GPT3.5 and GPT4.0 were done using the Ope-
nAl API, and each experiment took between 60 to
90 minutes, depending on the number of demon-
strations we included in the prompt given to the
model. The rest of the zero-shot experiments on
FlanT5, Llama 2, Macaw, and UnifiedQA mod-
els were all executed on two NVIDIA Quadro
RTX 8000 GPUs, each with 48 GB GPU mem-
ory. Zero-shot experiments on LLama 2 took
around 60 minutes, and zero-shot experiments on
FlanT5 and UnifiedQA took around 30 minutes
each. Few-shot experiments done on Llama-2
were done using a batch size of 8 and took between
60 to 120 minutes to finish, depending on the num-
ber of demonstrations. Also, all the semantic sim-
ilarities that were computed based on Sentence
BERT (Reimers and Gurevych, 2019) were utiliz-
ing the all-mpnet-base-v2 pre-trained model.

C Prompts

C.1 Extracting Narrative Elements

We utilized GPT3.5 to extract all the elements
mentioned in Section 4.1 from narratives except
for their corresponding proverbs that was already
provided in the ePiC dataset. We tested both
zero-shot extraction and few-shot extraction us-
ing solved demonstrations. Since using few-shot
demonstrations yielded more consistent outputs,
we extracted all the elements in the few-shot set-
ting. The prompt we used is as follows: Return
a list of {element} in the given narrative. All
the prompts were accompanied by three randomly
solved demonstrations with narratives and their
extracted elements that were extracted manually
by the authors.
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Proverb Narrative

Practice what you
preach

Tommy grabbed a cookie and began to eat it. "Don’t do that!" screamed Tommy’s
dad, "You will spoil your dinner if you eat it now." Tommy puts the cookie down.
Soon after, Tommy’s dad picks up the cookie and finishes it. Tommy walks in a
question why his dad is eating the cookie if it will spoil dinner.

Chain is only as
strong as its weak-
est link

The ingenious security system overlooked the possibility of an unscrupulous IT
manager which was the only possible way to hack system. The system was hacked
weeks later and the company lost millions.

A miss is as good
as a mile

Kate nervously awaits her test results. This is her last chance to pass the SAT before
college. As she looks at her paper, she realizes that she once again did not get what
she needed to get into her school of choice. Her score was better than last time, but
nonetheless, she still had failed.

Table 3: Examples of narratives with their associated proverbs.

C.2 Llama 2, GPT3.5, and GPT4.0
Evaluation

The prompts given to Llama 2, GPT3.5, and
GPT4.0 models for the main zero-shot and few-
shot experiments consisted of multiple compo-
nents: 1. the component in which the task is de-
fined and some details are provided about the tem-
plate that the model should use to return the an-
swers; 2. the component in which the demonstra-
tions are included in the prompt (shown in a lighter
color), which is not present in the zero-shot setting
and is repeated multiple times in the few-shot set-
ting depending on the specified number of demon-
strations. 3. the component that shows the ques-
tion that the model must solve:

narratives can be mapped to each other in terms
of the high-level message they strive to convey.
These high-level messages can be related to tra-
ditions, common knowledge, or moral principles.
We call this mapping analogical mapping. Which
one of the two narratives (1, 2) can create a better
analogical mapping with the query narrative?
Answer in the template: {{narrative_x, because
narrative_x and query_narrative are ...} }
query_narrative:  {query narrative demonstra-
tion}

narrative_l: {first candidate demonstration}

narrative_2: {second candidate demonstration}
A

{Answer provided with its corresponding expla-
nation}

query_narrative: {query_narrative}

narrative_l: {first candidate}
narrative_2: {second candidate)
et esarssirarisaay

narrative

C.3 Macaw, UnifiedQA, and FlanT5
Evaluation

The prompt given to Macaw, UnifiedQA, and
FlanT5 models that were utilized in zero-shot ex-
periments was different from the prompt used for
GPT3.5, GPT4.0, and Llama 2 models, because
of the specific instruction template that was used
in their fine-tuning. The content of the prompt is
the same as the other prompt; however, to adopt
a question-answering setting discussed in Macaw
(Tafjord and Clark, 2021), UnifiedQA (Khashabi
et al., 2020), and FlanT5 (Chung et al., 2024), we
slightly modified the prompt as follows:
narratives can be mapped to each other in terms
of the high-level message they strive to convey.
This high-level message can be related to tradi-
tions, common knowledge, or moral principles.
We call this mapping analogical mapping. Which
one of the two narratives (a, b) can create a bet-
ter analogical mapping with the query narrative?
query_narrative: {query narrative}. \n (a) {first
candidate} (b) {second candidate}

C.4 Generating Near Analogies

As it was mentioned in Section 4.4, near analogies
were created using the strengths of both LLMs
and human supervision, ensuring that near analo-
gies and their corresponding distractors form the
same lower-order mappings with the query narra-



tives while reflecting a given proverbial message.

Since the lower-order mappings between dis-
tractors and query narratives are not based on
exact lexical overlap and are based on semantic
similarity, we tried to simulate the same environ-
ment for the lower-order mappings formed be-
tween near analogies and query narratives. Hence,
when selecting the narrative elements that would
form lower-order mappings in near analogies, syn-
onyms of those particular elements were used to
prompt LLM to generate narratives. We used a
simple prompt to retrieve the synonyms as pre-
sented below:
shortly paraphrase or give a short synonym for
{element content} without any explanations.

The complete prompt that we used to generate

the near analogies given the proverb and the el-
ements that must be contained in the narrative is
presented below:
Generate a random narrative with 4-8 sentences
that uses {elements type and their content]. THE
NARRATIVE MUST HAVE THE SAME CONCLU-
SION AS THE PROVERB: {given proverb}. Only
return the narrative without any explanation, and
also DO NOT mention the proverb.

D Additional Discussion
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Figure 7: Effect of scaling each family of models up
on the analogical reasoning performance in a zero-shot
setting.

D.1 Effect of Scaling Up the Models’ Size on
Analogical Reasoning

Figure 7 demonstrates the zero-shot performance
of all models on ARN with different numbers of
parameters. In line with the prior finding (e.g., Wei
et al., 2022a), we found that scaling up the models
enhances the analogical reasoning capabilities of
models. The increase in the performance of mod-
els was 10 absolute points, on average, with Uni-
fiedQA gaining the most from scaling up the num-

ber of parameters, as high as almost 20 absolute
points.
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Figure 8: Performance of all models on ARN, in a
zero-shot setting, categorized jointly by the type of
analogies and distractors.

D.2 Distracting Effect of Surface Mappings

Performance of all models on ARN categorized
by the type of analogies, disanalogies, and spe-
cific surface mappings included in distractors, is
demonstrated in Figure 8. We observed that for
all the models except for UnifiedQA-11B, includ-
ing all types of distractors is more distracting than
scenarios where some are excluded, especially in
far analogies. In other words, each distractor has
its own individual effect on the performance and
their aggregated effect is stronger than individuals.
Also, among different elements, the lower-order
mappings that were formed based on the actions
of narratives had the most distracting effect on the
analogical reasoning abilities of models. How-
ever, we saw a different trend for UnifiedQA-11B,
where including all the distractors did not yield the
most distracting effect, and indeed the model had
its highest performance when all types of distrac-
tors were included.

D.3 Do Models Find Analogies and
Similarities Different From Each Other?

While in our main experiments, we explicitly
prompted the model to find system mappings and
mappings based on proverbial high-level mes-
sages, in an additional experiment, we prompted
models to look for mere "similarity," with the per-
formance of models in both settings demonstrated
in Table 5. We observed that the performance



with the explicit instruction to look for analog-
ical mappings is higher compared to the setting
without explicit instructions, which is reasonable
given the nature of the task and models following
the instructions. The relatively small gap between
the two settings might be due to the models see-
ing analogical mappings as more sound compared
to surface mappings, which is similar to humans
(Gentner et al., 1993). These results suggest that
the low performance of the models in Table 2 is
not due to the chosen prompt. However, future
work can investigate more effective approaches
to activate the analogical reasoning abilities of
LLMs.



Partition

‘ Query narrative

| narrative 1

narrative 2

far, near

Johnny was having a very hard time at
work. He had too many projects and
too many short deadlines, and he was
stressed. He kept working as hard as
he could to finish everything, and it
paid off. His boss noticed how hard
he was working and offered him a
raise, as well as his choice in future
projects.

She had been devastated when
the relationship ended and spent
many empty days lying in bed,
crying her eyes out and feeling
that there was no point in going
on. She hadn’t even wanted to go
to the party a couple of weeks later
but a friend persuaded her. Whilst
there, she locked eyes with a great
looking guy and in no time they
were chatting like old friends and
exchanging numbers. Tomorrow
is their second anniversary.

The man had been in the job for ten
years and had never had a payrise, de-
spite his diligent hard work. One day
he plucked up the courage to ask his
boss for a rage and was curtly refused.
That was it! He decided. No more
working his hardest. He was going to
slack as much as he could and not take
any further pride in his work.

far, far

Bob designed a well-organized
project management spreadsheet and
loaded it to SharePoint for the other
project managers to take a look at.
Jack changed the formulas in the
costing section. Rachel redesigned
the charts. Tom hid several columns.
Charlie reformatted cells. When Bob
looked at the spreadsheet again, it
was unusable.

She had been diagnosed with breast
cancer but recovered. She felt sur-
prised why she got the disease be-
cause she always leads a healthy life.
She thinks that there is no point in
worrying about the disease coming
back. What she wants to do now is
to improve her health condition and
monitor her diet. So she goes to
gym every day and changes to a ve-
gan diet. She feels more optimistic
and does not worry about the disease
anymore.

Marsha was cooking dinner for the
night. She seasoned the food and left
the room. Her husband walked into
the kitchen and saw the food on the
stove. He tasted it and added salt.
‘When Marsha walked back into the
room, she remembered that she for-
got to season the food, so she added
salt. The food was too salty and they
had to order pizza that night.

near, near

My daughter is away at college for the
first time. I am worried about her be-
ing so far from home and not near any
family. I am sure that she is having a
great time and is too busy to check in
with me. I trust that she would con-
tact me if something was wrong so
she must be doing fine.

She worried every day about her son
after he left for college. They had al-
ways been so close before. A month
had gone by and she had not even
had so much as a single phone call
from him and they used to talk every
day. It seemed he was so involved in
his new life his mother just never oc-
curred to him.

As a concerned parent, my ulti-
mate goal was to ensure my daugh-
ter’s safety and well-being at col-
lege. With each passing day, I anx-
iously awaited news from her about
her experiences and endeavors at the
university. However, as the days
turned into weeks and the weeks
into months, the absence of trou-
bling news brought me solace, reas-
suring me that she was thriving and
happy in her new environment.

near, far

Maria went abroad and she brings
something to her friend Jucy a per-
fume as gift when she’s back to her
hometown and Jucy still not happy
of the gift that Maria gives to her,
she wants more than a perfume. Jucy
should be content of what Maria gives
to her at least Maria is thinking of her.

Once upon a time, two lifelong
buddies stumbled upon a mysteri-
ous box in the middle of the for-
est. Curiosity piqued, they cau-
tiously opened it and to their as-
tonishment, found a rare and valu-
able treasure inside. Despite their
better judgment, one of the bud-
dies couldn’t resist inspecting the
gift closely, only to discover a
small flaw that cast a shadow over
their newfound joy. In the end,
they both realized that their un-
expected fortune should be cher-
ished without questioning its im-
perfections.

Although the friend really was inno-
cent, he got arrested alongside his
friends for being at the wrong place at
the wrong time, but mostly because of
his friends being the usual suspects.

Table 4: Examples of ARN dataset covering four categories of far/near analogies facing far/near disanalogies.

Correct answers are boldfaced.



Task Partition (near, far) (near, near) (far, far) (far, near) Avg.
GPT3.5 88.1 (81.9) | 81.3(74.3) | 50.4 (50.2) | 21.7 (25.3) | 60.3 (57.9)
GPT4.0 94.0 (92.7) | 92.5(89.0) | 57.1 (54.1) | 29.1 (17.7) | 68.1 (63.4)
UnifiedQA-large | 43.2 (46.9) | 49.1 (52.2) | 47.2 (46.2) | 50.5 (47.1) | 47.5 (48.1)
UnifiedQA-3B 66.4 (61.0) | 68.4(62.7) | 47.3(47.3) | 44.4 (38.9) | 56.6 (52.5)
UnifiedQA-11B 60.7 (63.4) | 61.2 (65.3) | 54.8 (53.7) | 74.6 (52.9) | 62.8 (58.8)
Llama2-7B 63.4 (74.4) | 58.0 (66.0) | 50.1 (47.8) | 43.1(36.8) | 53.7 (56.3)
Llama2-13B 80.9 (82.3) | 81.4(74.8) | 44.5(45.2) | 35.4(41.7) | 60.5 (61.0)
FlanT5-large 84.5(84.2) | 80.3(79.6) | 41.4(39.0) | 14.4(11.9) | 55.1 (53.7)
FlanT5-x1 78.9 (74.5) | 68.3(67.0) | 44.7 (42.0) | 21.1(20.4) | 53.2 (51.0)
FlanT5-xxI1 89.9 (76.1) | 81.3(72.0) | 51.1 (48.0) | 35.6 (34.3) | 64.4 (57.6)
Macaw-11B 88.0 (86.4) | 84.6(82.3) | 42.1 (42.0) | 35.8(34.0) | 62.8 (61.2)

Table 5: Accuracy (with random baseline of 50%) of tested LLMs in zero-shot setting, on ARN, with and without
(in parentheses) explicit instructions to attend to system mappings, in four categories of far/near analogies facing
far/near disanalogies, e.g., (near, far) indicates the setting where near analogies are alongside far disanalogies.

Query narrative ‘ narrative 1 ‘ narrative 2 ‘ Model prediction
The bees often pollinate the flow- | Not everybody was paying at- | A man named Toribo carried a | narrative_2, because
ers in the early morning, when | tention to our pastor when we | bag full of charms over the moun- | narrative_2 and

the dew rests upon the blades of
grass and the birds are still find-
ing their tune. The uniform bloom
of the flowers allowed for a uni-
form death. One bee decided to go
against the grain one day and pol-

were at the Football tourna-
ment. Pastor took more than
two hours trying to preach.
but from the observation no
one was interested in his ser-
mon, his preaching is liked by

tain to the fairest princess to con-
vince her he was nice enough for
her to love him. He thought that
charms of flattery would make her
victim to his control, but when
he found the Princess she was

query_narrative  both
convey the message
that going against the
natural or expected or-
der of things can lead
to unintended negative

linate when the birds were asleep | many, but not at this particu- | uninterested by his fake, flowery | consequences.

in the dead of night. While at | lar moment that we came to | words. Instead of committing her-

first glance the flower seemed un- | play and have fun. self to Toribo, the princess fell

affected, it began to wilt at an ac- in love with herself and chose to

celerated pace compared to those wait for a person who loved her

who had been pollinated the next as she was, and not only someone

morning. It was a fatal mistake. who threw superficial flatteries her

way.

Robbie delighted in telling peo- | When we began our charl- | Upon clearing college, I had big | narrative_2, because
ple stories about his wealthy back- | ity organization at Mathare | ambitions. I wanted to take over | narrative_2 and
ground even though he actually | slums, which was aiming at | from my father as the CEO of | query_narrative  are

came from a poor home. In
college, his new roommate con-
fronted Robbie about his true

finding the young people who
had gone into crimes and re-
habilitate them we started by

our family’s companies. My fa-
ther admonished me saying that
I needed to go get a few profes-

both about individuals
who have to confront
the reality of their

background. His roommate told | making friendship with those | sional courses on business man- | situations and make
Robbie he also told people false | street children at the slums. | agement before he could hand | adjustments accord-
stories about his rich parents. Finally we were able to track | over the reins to me. At first I was | ingly.

and talk to the young gang- | hesitant to go back to school, but

sters for we were able to lo- | I saw the sense and reckoned that

cate where they used to hide | I needed to tool myself for the du-

by the help of the one we | ties that awaited me. There was a

friended. process.
Max was a ferocious looking and | In response to being ignored | Billy was so excited to win the | narrative_1, because
sounding canine. People walking | by her so-called friend at the | race for class president. =~ He | narrative_l and the

by him would cross to the other
side of the road. One day a deaf
man was walking by the yard and
Max was going off with his inces-
sant yowling. Max ran to the side-
walk, still yepping, but let the man
walk by unscathed.

party, she decided to balance
things out by not responding
to her messages the next day.
She later found out that her
friend’s boyfriend had left her
and that was why she was so
quiet at the party. She felt
terrible for ignoring her mes-
sages the next day and wished
she had not responded in this
negative way.

worked so hard to win, and he was
so proud of himself. His oppo-
nent wasn’t so happy. He kept
telling Billy that he was going to
make sure he failed as president,
and that everyone would be sorry
they voted for him. But consider-
ing that he did the same thing last
year, Billy knew it was all talk.

query_narrative  both
involve a misunder-
standing due to lack of
information, leading
to regrettable actions
or reactions.

Table 6: Examples of GPT4.0 errors alongside the free-text rationales generated by the model in a zero-shot
setting.



