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Abstract

Noun-noun compounds interpretation is the
task where a model is given one of such con-
structions, and it is asked to provide a para-
phrase, making the semantic relation between
the nouns explicit, as in carrot cake is “a cake
made of carrots.” Such a task requires the abil-
ity to understand the implicit structured repre-
sentation of the compound meaning.

In this paper, we test to what extent the re-
cent Large Language Models can interpret the
semantic relation between the constituents of
lexicalized English compounds and whether
they can abstract from such semantic knowl-
edge to predict the semantic relation between
the constituents of similar but novel com-
pounds by relying on analogical comparisons
(e.g., carrot dessert). We test both Sur-
prisal metrics and prompt-based methods to
see whether i.) they can correctly predict the
relation between constituents, and ii.) the se-
mantic representation of the relation is robust
to paraphrasing.

Using a dataset of lexicalized and annotated
noun-noun compounds, we find that LLMs
can infer some semantic relations better than
others (with a preference for compounds in-
volving concrete concepts). When challenged
to perform abstractions and transfer their in-
terpretations to semantically similar but novel
compounds, LLMs show serious limitations1.

1 Introduction

Noun-noun compounds represent an important
challenge for all the applications related to Natu-
ral Language Understanding, given the implicit se-
mantic relation assumed between the two compo-
nents, namely: head and modifier (Nakov, 2008b).
Their correct interpretation is an essential step
for several Natural Language Processing applica-
tions such as question answering, machine trans-

1Data and code available at: https://osf.io/67k9u/
?view_only=258fa2570d984372ad104e19d77f71bb

lation, and information extraction. For example,
if a question answering system is asked some-
thing about birthday cake, it must understand that
the user is talking about a cake made for birth-
days; while if it is asked about a carrot cake, it
must understand that the query refers to a cake
made with carrots (not for carrots). The capac-
ity to grasp the semantic connection underlying
the pairing of two terms in a compound repre-
sents a form of abstraction inherent to human cog-
nition, applicable to concrete and abstract con-
cepts alike (concrete such as carrot cakes and ab-
stract such as bank loans). This skill is often
wielded even for never-encountered-before com-
pounds (Van Jaarsveld and Rattink, 1988).

Previous research stressed the role of structured
world knowledge in the interpretation of com-
pounds (Wisniewski and Love, 1998; Ó Séaghdha,
2008), which includes the knowledge of the
constituent entities and their potential relations.
Moreover, people are able to interpret novel com-
pounds by abstracting from knowledge based on
past experiences with similar conceptual combi-
nations (Gagné and Spalding, 2006b; Gagné and
Shoben, 1997, 2002, among others) and to extend
them by relying on analogical comparisons (Krott,
2009). Can the modern Large Language Models
(LLMs) do the same?

The main goal of our study is to propose a more
refined methodology to understand when and how
LLMs are capable of performing abstractions that
humans routinely do, namely: understanding the
semantic relation existing between the two compo-
nents of a lexicalized compound and then extend-
ing such relation to novel compounds that are con-
structed in such a way to maintain the semantics of
the original components. To do so, we manually
manipulated existing compounds by replacing one
of the two terms (head or modifier) with their hy-
pernym, namely a word denoting a superordinate
concept (Cruse, 1986). This allowed us to gener-

https://osf.io/67k9u/?view_only=258fa2570d984372ad104e19d77f71bb
https://osf.io/67k9u/?view_only=258fa2570d984372ad104e19d77f71bb


compound coarse-grained
(Tratz, 2011)

fine-grained
(Tratz, 2011)

Hatcher-Bourque
(Pepper, 2022)

paraphrase
(Pepper, 2021)

plastic bag containment
SUBSTANCE
-MATERIAL-
INGREDIENT

COMP(OSITION)-R a bag that is composed of plastic

trash bag containment CONTAIN CONT(AINMENT)-R a bag that contains trash
supermarket shelf loc_part_whole LOCATION LOCATION a shelf that is located in a supermarket

car door loc_part_whole
WHOLE+
PART_OR

_MEMBER_OF
PARTONOMY a door that is part of a car

food company purpose

CREATE-
PROVIDE-

GENERATE-
SELL

PRODUCTION a company that produces food

bank loan causal
CREATOR-
PROVIDER-
CAUSE_OF

PROD(UCTION)-R a loan that a bank produces

research group purpose PERFORM&
ENGAGE_IN PURPOSE a group intended for research

art class topical TOPIC TOPIC-R a class that is about art
wind turbine topical MEAN US(A)G(E)-R a turbine that uses wind

Table 1: Semantic relations of Tratz (2011) and their mapping onto the Hatcher-Borque classification.

ate novel compounds such as birthday dessert and
event cake, based on the lexicalized birthday cake.
To test the LLMs’ ability to understand the seman-
tics of lexicalized and novel compounds, we as-
sess whether Surprisal, a metric directly based on
the log probabilities of the LLMs, is able to dif-
ferentiate between the possible interpretations of a
compound. We hypothesize that LLMs may be ac-
curate in recognizing the correct semantic relation
holding between the two components of a lexical-
ized compound. Moreover, if we were to observe
any differences in the performance across differ-
ent types of compounds, we would argue that such
differences may be (at least partially) explained
by the concreteness of the compound, in line with
previous psychological findings showing that con-
crete concepts are processed more easily than ab-
stract ones (Jessen et al., 2000). As a complement
to Surprisal analyses, we performed a metalinguis-
tic prompt asking to identify the correct interpre-
tation of a compound from a list of options. We
relied on LLMs trained with Instruction tuning,
a method that has recently been proposed to en-
hance the generalization capability of LLMs, and
assessed the performance of some of the most pop-
ular architectures on this task.

Contributions Our contributions can be sum-
marized as follows:

1. To the best of our knowledge, we are the first
to investigate compound interpretation with
the most recent LLMs, including instruction-
tuned variants;

2. We introduce a dataset designed to manipu-
late compounds at several levels of linguis-
tic information and present a methodology
to generate novel compounds that could be
helpful for future investigations.

2 Related Work

The problem of the interpretation of compounds
has generally been addressed via two different
tasks: the first one is the classification in a limited
inventory of ontological/semantic relations hold-
ing between the two nouns (Nastase and Szpakow-
icz, 2003), and the second one is the free gen-
eration of a paraphrase describing the same rela-
tions (Hendrickx et al., 2013; Shwartz and Water-
son, 2018; Shwartz and Dagan, 2019). With the
introduction of Transformer-based language mod-
els, several studies have proposed to investigate
their internal representations to understand how
the constituent meanings are composed (Ormerod
et al., 2023; Miletić and Schulte im Walde, 2023;
Buijtelaar and Pezzelle, 2023, among others), and
if and to what extent they are able to generalize to
interpret unseen compounds (Li et al., 2022).

Coil and Shwartz (2023) proposed a few-shot
model based on GPT-3 (Brown et al., 2020)
to tackle interpretation, and they were able to
achieve almost perfect performance on a SemEval
noun compounds benchmark by Hendrickx et al.
(2013). However, by measuring the n-gram over-
lap between the generated paraphrases and the C4
corpus (Raffel et al., 2020), they found that GPT-3
might just be parroting word sequences seen in the



training data, and the strategy turned out to be less
effective with rare or novel compounds.

Is the knowledge encoded in recent LLMs -
including instruction-tuned ones- sufficient to in-
terpret the relation between constituent nouns and
to generalize the interpretations to novel com-
pounds? Language models retain a non-trivial
amount of knowledge about the world, and this is
reflected in the log probability scores that they as-
sign to real-world situations and events described
by natural language sentences (Pedinotti et al.,
2021; Kauf et al., 2023); moreover, the recent
progress on instruction tuning led to even better
alignment with conceptual representations in the
human brain (Aw et al., 2023). Therefore, our in-
vestigation will focus on three of the most popu-
lar LLMs (Llama-2, Falcon, and Mistral), both in
their Base and in their Instruct version, to see if
instruction tuning leads to performance improve-
ments also in the interpretation of compounds.

3 Do LLMs Grasp Semantic Relations in
Lexicalized Noun Compounds?

3.1 Data

For our experiment, we selected compounds from
two previously released datasets. Tratz (2011)
gathered in his dataset around 19K compositional
noun compounds human-annotated with a seman-
tic relation (37 fine-grained relations, 12 coarse-
grained relations). Conversely, Muraki et al.
(2023) collected concreteness ratings for over 60K
multiword expressions from 2,825 online partici-
pants. Expressions were rated from 1 to 5, where 1
indicates that the expression was very abstract and
5 that the expression was very concrete2. In order
to use the concreteness ratings collected by Mu-
raki as a predictor for the LLM accuracy in identi-
fying the correct semantic relation between head
and modifier, we retained only the compounds
from Tratz associated with concreteness ratings in
Muraki. The intersection of the two datasets re-
sulted in 2,268 noun-noun compounds annotated
with word and bigram frequency (extracted from
enTenTen20 corpus; cf. Jakubíček et al., 2013; Su-
chomel, 2020), concreteness score, semantic rela-
tion class, and the semantic type of the compound
(provided by three annotators who followed the
coding scheme of Villani et al., 2024). We be-

2’Concreteness’ refers to the degree to which the concept
denoted by a word refers to a perceptible entity (Brysbaert
et al., 2014).

lieve that the more linguistic features are added to
a compound, the more we can shed light on which
factors influence LLMs’ plausibility of noun com-
pounds.

Additionally, we associated a paraphrase cre-
ated for each compound for the following rea-
sons. Using abstract semantic categories to de-
scribe compounds is considered problematic be-
cause i.) it is unclear which relation inventory is
the best one, ii) such relations capture only part of
the semantics (e.g., classifying malaria mosquito
as CAUSE obscures the fact that mosquitos do
not directly cause malaria, but just transmit it),
and iii.) multiple relations are possible (Nakov,
2008a). Therefore, common compound datasets
used in NLP typically provide linguistic para-
phrases of compounds produced by human anno-
tators. However, if multiple paraphrases are re-
ported for each compound, this causes an expo-
nential generation of similar paraphrases in the
data; for instance, golf course can be “course for
golf,” “course for playing golf,” “course for the
game of golf,” etc. (from Hendrickx et al., 2013).

We decided to follow a different approach to
reduce the variability of paraphrases. We con-
verted Tratz’s relations into the Hatcher-Bourque
classification (Pepper, 2022), a classification of
semantic relations suitable for typologically dif-
ferent languages. The classification comprises 17
low-level relations, and some of them can be re-
versible (the first word of the compound, usually
the modifier, is the semantic head). These rela-
tions are grouped according to the three high-level
relations (similarity, containment, and direction).
We chose this classification not just because it was
conceived to be cross-linguistically consistent but
also because Pepper (2021) proposed an Excel-
based tool for the computer-assisted analysis of se-
mantic relations called the “Bourquifier”. For in-
stance, the relation USAGE, which expresses the
relation between something that is “used” and the
entity (“user”) that uses it, can be translated as
“an H that an M uses” (e.g., a lamp oil is “(an)
oil that a lamp uses"). Conversely, animal doc-
tor is annotated with the semantic class PURPOSE
and expresses the relation between an entity and
its purpose, and it is paraphrased as “a doctor
intended for animals." We used the Bourquifier as
a template to create compound paraphrases; as a
result, compounds classified under the same se-
mantic relation have a similar paraphrase.

For the present study, we selected only com-



Relation Count Mean Conc
COMP-R 85 4.47
CONT-R 54 4.49
LOCATION 107 4.15
PARTONOMY 16 4.58
PROD-R 13 3.18
PRODUCTION 47 4.34
PURPOSE 270 4.01
TOPIC-R 66 3.30
USG-R 10 4.24

Table 2: Statistics of frequency and mean concreteness
ratings for the LNC dataset.

pounds with a clear map between Tratz and
Hatcher-Bourque classifications from the overall
dataset, disregarding ambiguous compounds or
odd paraphrases. The final subset consists of
668 lexicalized (and compositional) noun-noun
compounds (henceforth, LNC) and contains com-
pounds for nine semantic relations. Table 1 illus-
trates the final relations with the associated para-
phrase, while Table 2 describes the distribution of
semantic relations together with their mean con-
creteness.

In addition, we used the dataset of Nakov
(2008b), which contains 250 compounds anno-
tated with 16 semantic classes (coming from
the classification by Levi (1978)) and human-
proposed paraphrasing verbs (see Table 3). For
our purposes, we selected the most frequently pro-
duced verb expressing the correct underlying rela-
tion for each compound and created a short sen-
tence. For example, beacon grease becomes “(a)
grease that comes from (a) bacon." This dataset
serves as a diagnostic test for the evaluation of
our dataset. Specifically, we assess whether LLMs
show higher performance when asked to recog-
nize paraphrases that are generated spontaneously
by humans instead of those generated from the
Bourquifier templates.

3.2 Methods

Models We evaluated three open-source LLMs
and their instruction-tuned variant: Llama-2 (Tou-
vron et al., 2023), Falcon (Almazrouei et al.,
2023), and Mistral (Jiang et al., 2023). All models
are open-source, pre-trained autoregressive text
models with 7 billion parameters. As a baseline,
we selected BERT-large-uncased (Devlin et al.,
2019), a bi-directional masked language model,

Relation Verb Count
ABOUT involve 18
BE be 42
CAUSE1 cause 8
CAUSE2 be caused by 17
FOR contain 16
FROM come from 22
HAVE1 contain 14
HAVE2 come from 14
IN occur in 22
MAKE1 make 4
MAKE2 be made of 20
NOMIN:ACT be made by 15
NOMIN:AGENT give 6
NOMIN:PATIENT work for 5
NOMIN:PRODUCT be made by 11
USE use 16

Table 3: Descriptive statistics for Nakov dataset. We
report the most frequent verbal expression associated
with each of the 16 semantic relations.

and GPT2-xl (Radford et al., 2019), an autoregres-
sive one.3

Tasks The aim of this study is to evaluate
whether LLMs are able to correctly identify
the semantic relation underlying noun-noun com-
pounds. We propose not to make the model gen-
erate the correct paraphrase but to pick the correct
one from a list of possible paraphrases. From the
LNC dataset, we used the Bourquifier templates to
make implausible paraphrases of the compound.
For the Nakov dataset, we selected the most fre-
quent verbal phrase associated with each relation
(Table 3) and used it to create the distractors.

We designed two complementary tasks to eval-
uate the ability to interpret compounds: i.) di-
rect probability measures and ii.) metalinguistic
prompting. In the first task, we compute the Sur-
prisal at the sentence level. The Surprisal St of
the single token ti is defined as the negative of the
log probability of ti, conditioned on the preceding
sentence tokens w<i. The Surprisal of the over-
all sentence (Ss) is then defined as the sum of the
Surprisals of each token (St), normalized by the
length of the sentence:

Ss =

∑T
t∈S St

count(t)
(1)

For BERT, a bidirectional masked language
model, the Surprisal of sentences was computed
using a modified version of the metric by Kauf

3We only focus on open LLMs i.) for reproducibility rea-
sons, and ii.) because we are interested in comparing the Base
and the Instruct version of the very same models.



baselines LLMs (Base) LLMs (Instruct)
BERT-large GPT2-xl Llama-2 Falcon Mistral Llama-2 Falcon Mistral

LNC Acc 0.262 0.338 0.401 0.433 0.403 0.448 0.38 0.428
MRR 0.509 0.542 0.583 0.595 0.569 0.599 0.557 0.592

Nakov Acc 0.484 0.548 0.592 0.568 0.6 0.632 0.56 0.648
MRR 0.641 0.682 0.722 0.707 0.73 0.746 0.698 0.756

Table 4: Surprisal results on the LNC and Nakov datasets.

and Ivanova (2023). In short, each sentence to-
ken is sequentially masked, the Surprisal score
is retrieved by using the sentence context in a
masked language modeling setting, and then the
partial scores finally get summed; additionally, for
out-of-vocabulary words, all the tokens within the
word also get masked, and not just the target one
(this helps to avoid the probability overestima-
tion of rare words). The Surprisal scores were
extracted using the minicons library v. 0.2.33
(Misra, 2022).

Our assumption is that the correct paraphrase of
a given compound (goodNC) should have a lower
Surprisal score than the scores of all incorrect al-
ternatives (badNC).

∀s ∈ badNC , S(goodNC) < S(s) (2)

As a more natural way of evaluating the per-
formance of instruct-tuned models, we decided to
prompt them to select the best paraphrases for a
given compound. Specifically, a model is asked to
choose a correct paraphrase from a list of expres-
sions (full example in Appendix A):

Which is the most likely description
of "olive oil"?
1. an oil that uses olives;
2. an oil that is part of olives;
...
9. an oil that is composed of olives

We ran three different versions of prompting
strategies: zero-shot (no examples of the task are
provided), one-shot, and three-shot learning (one
and three examples are provided, respectively).
Since we observed inconsistent output from the
zero-shot prompting, we just reported results for
the other two settings. For this task, we selected
only the instruction-tuned variants of Llama-2,
Falcon, and Mistral and used the same hyperpa-
rameters for all models4. All experiments were
run on Colab TPU and A100.

4Temperature: 0, do_sample: False, top-k: 10, top-p: 5,
max-tokens: 50, frequency and presence penalty: 0.

3.3 Results

Surprisals Table 4 reports LLMs’ performance
over the two datasets. We computed two differ-
ent performance metrics: i.) Accuracy, the pro-
portion of compounds where the model assigns
the lowest Surprisal to the correct paraphrase, and
ii.) Mean Reciprocal Rank (MRR). For this met-
ric, we ranked the paraphrases in terms of their
Surprisal (from the smallest values to the largest
ones) and computed the multiplicative inverse of
the rank of the correct answer (1 if it is in the
first place, 0.5 for the second, and so on). The
overall Accuracy of recent LLMs is higher than
the two baselines (BERT: 26,2%; GPT2: 33,8%),
with BERT performing poorly. The MRR scores
generally align with Accuracy. Instruction-tuned
variants are not consistently better than their Base
variants: Llama-2 Instruct reaches a statistical sig-
nificance of the improvement over the Base model,
but the opposite trend is observed for Falcon,
whose instruction-tuned version performs statis-
tically worse than its Base counterpart. Finally,
Mistral’s improvement of the Instruct model over
the Base one does not reach statistical signifi-
cance. Considering the instruction-tuned models,
Llama-2 gains the highest performance (44,8%),
but there is no statistical difference with Mistral
(42,2%), while both models are statistically better
than Falcon (38%)5. Overall, 200 compounds are
always correctly categorized by Llama-2, Falcon,
and Mistral.

To further gather an idea of which semantic
relations are commonly mistaken by all mod-
els and to identify similar patterns across their
Surprisal distributions, we additionally computed
each class’s accuracy. In this case, per-class Ac-
curacy is considered as the proportion of com-
pounds where the model assigns the lowest Sur-
prisal to the paraphrase of the correct class over

5We determine the significance of differences between
model accuracies with McNemar’s Chi-Square Test, applied
to a 2x2 contingency matrix containing the number of cor-
rect and incorrect answers. Statistical significance is reached
when p-value < 0.01.



Figure 1: LNC dataset: Percentage of semantic relations chosen by the model compared to the gold semantic
relation (in the x-axis).

the total compounds annotated with that seman-
tic relation/class in the gold standard. We trans-
formed the results as a stacked barplot (Figure 1):
each column represents the original semantic class
of compounds, while the colors in each bar repre-
sent the percentage of semantic relations ‘chosen’
by each model, i.e., the corresponding paraphrase
with the lowest Surprisal. If the bar has the same
color as the original category, the model consis-
tently tends to assign the lowest score to the cor-
rect class; otherwise, it is possible to investigate
which errors the model is making, especially if it
is biased towards some relations. By looking at
Figure 1, the analysis by category reveals an in-
teresting trend across LLMs: some semantic rela-
tions have higher Accuracy (COMP-R and PRO-
DUCTION are almost perfect), whilst others are
commonly mistaken (PURPOSE, PROD-R, and
TOPIC-R). It is worth noticing that the semantic
relations that are less understood are also the ones
referring to less concrete referents (the average of
concreteness ratings is 3.18 for PROD-R and 3.30
for TOPIC-R, cf. Table 2). A binomial general-
ized linear mixed model demonstrates that there
is a positive, significant effect between Accuracy
as dependent variable and concreteness as the in-
dependent variable (coefficient= 0.703, SE=0.133,
p<0.001), showing that accuracy increases with
concreteness (AIC: 894.7 BIC: 908.2).

The evaluation of the Nakov dataset gives sim-

ilar results (cf. Appendix B): Instruction-tuned
LLMs have higher performance (Llama-2: 63,2%,
Mistral: 64,8%). In this case, the compounds that
are accurately recognized are from the semantic
classes of FROM (between 86-94% of accuracy),
CAUSE2 (between 84-94% of accuracy), MAKE2
(between 80-92% of accuracy), and NOMINAL-
IZATION_PATIENT (but this group consists of
5 compounds only). While accuracy scores are
higher than those computed for our LNC dataset,
this outcome does not demonstrate that a more nat-
uralistic input changes the Surprisal distributions.

Prompting The results of the prompting experi-
ment are in line with Surprisal scores. As reported
in Table 5, Mistral obtains the highest values,
reaching 59% of Accuracy in the 1-shot setting.
It is interesting to notice that adding examples to
the prompt negatively affects the models’ answers.
Considering the best variant, PRODUCTION is
almost always identified correctly (96%), but its
counterpart PROD-R is hardly chosen (15%). The
evaluation of Nakov compounds (Table 6) is in
line with the LNC dataset, and Mistral performs
very well in both settings (one-shot:80%, three-
shot:75%). Overall, the best model is more con-
fused with the ABOUT relation (just 61% of accu-
racy). Finally, the models sometimes tend to jus-
tify their choice, giving us an idea of what their
interpretation is. Interestingly, they do not halluci-
nate but answer coherently even when they fail to



model 1-shot 3-shot
Llama-2-7B-chat-hf .41 .18
Mistral-7B-Instruct .59 .56
Falcon-7B-Instruct .15 .14

Table 5: Prompt Accuracy over the LNC dataset.

model 1-shot 3-shot
Llama-2-7B-chat-hf .42 .33
Mistral-7B-Instruct .80 .75
Falcon-7B-Instruct .15 .21

Table 6: Prompt Accuracy over the Nakov dataset.

select the preferred option. This qualitative analy-
sis of the answers further confirms that instruction-
tuned LLMs can provide definitions similar to hu-
man ones but do not always process the underlying
relation encoded into the semantics of compounds.

4 Are LLMs Generalizing Semantic
Relations over Novel Compounds?

Interpreting a novel compound (e.g., birthday
dessert) involves both the conceptual and lexical
systems; one must: i.) access the concepts de-
noted by the words and ii.) select a relation (e.g.,
a dessert intended for a birthday) to form a unified
conceptual representation (Gagné and Spalding,
2006b). Coil and Shwartz (2023) observed that
even for rare compounds, GPT-3 is able to gen-
eralize and make sense of new concepts, but the
model tends to parrot incorrect paraphrases from
the training set more often than correct ones.

We hereby designed and explored a diagnos-
tic dataset to investigate how LLMs deal with
novel compound interpretation. Instead of rely-
ing on randomly generated infrequent combina-
tions, we manipulated our original dataset of lex-
icalized compounds by replacing the head or the
modifier with one of its hypernyms in order to an-
swer the following questions: i.) Can LLMs gen-
eralize (i.e., can they abstract) an implicit semantic
relation that ties the two constituents of a conven-
tional compound and transfer it to a semantically
similar but novel compound? ii.) Does LLMs’
performance change as a function of the type of
the component (head or modifier) being replaced
for the construction of the novel compound?

4.1 Data and Methods
From the original dataset, we extracted the hy-
pernyms of the head and modifier using WordNet
3.0 (Fellbaum, 2010)6. Only hypernyms occur-
ring more than 1000 times in the enTenTen20 cor-
pus were selected. The frequency of the new bi-
gram (the novel compound) was then calculated,
and only meaningful expressions with a frequency
of occurrence lower than 30 were retained as novel
compounds. For instance, given the compound ap-
ple orchard (“an orchard that produces apples”),
we created the compounds pome orchard (“an or-
chard that produces pomes”) as a novel compound
with the same head (sameHead) but replaced mod-
ifier, and apple parcel (“a parcel that produces ap-
ples”), as a same modifier (sameMod) but replaced
head novel compound. This diagnostic dataset,
which we named Novel Nominal Compounds
(NNC), consists of 64 novel compounds covering
four semantic relations: CONTAINMENT-R, LO-
CATION, PRODUCTION, and PURPOSE.

4.2 Results
Surprisals We computed the Surprisal scores on
the novel compounds’ paraphrases containing the
original semantic relation (e.g., “pome orchard is
an orchard that produces pomes”) and compared
them with the Surprisals of the corresponding dis-
tractor paraphrases (e.g., “pome orchard is an or-
chard that is located in pomes”), following the
same methodology presented in the previous ex-
periment. As expected, the results are lower than
the previous experiment. An aspect to notice is
that the models tend to assign the lower score to
the paraphrase of the original semantic relation
more often when the head is fixed (blue bar) than
when the modifier is fixed (orange bar, Figure 2).
This is valid for Llama-2 (Base and Instruct), Fal-
con Base, and Mistral Instruct. It is worth noticing
that BERT performs better than some of the larger
models and shows the opposite trend.

Prompting We observe that Llama-2 and Falcon
perform poorly on this task, while Mistral achieves
good performance, obtaining accuracy scores of
.578 (1-shot) and .531 (3-shot) for the sameHead
part of the NNC dataset and .469 (1-shot) and
.30 (3-shot) for the sameMod. Considering just
the results for this model, we observe that chang-
ing the head or the modifier affects the ability of

6We queried WordNet by relying on NLTK package, ver-
sion 3.8.1. (Bird et al., 2009).



Figure 2: Surprisal Accuracy over the NNC dataset.

sameHead sameMod
model 1 3 1 3

shot shot shot shot
Llama-2-7B-chat-hf .156 .172 .141 .219
Mistral-7B-Instruct .578 .531 .469 .30
Falcon-7B-Instruct .047 .063 .079 .047

Table 7: Prompt accuracy over the NNC dataset.

the model to recognize good paraphrases differ-
ently. For example, the CONTAINMENT-R re-
lation (CONT-R) is not particularly problematic
when the novel word is the modifier (accuracy 1-
shot: .474, 3-shot: .737). For instance, the novel
compound equipment box (from glove box) is cor-
rectly paraphrased as “a box that contains equip-
ments” by the two versions of Mistral. However,
performance drops when changing the head (accu-
racy 1-shot: .37, 3-shot: .05). Given the previous
example, Mistral (3-shot setting) associated to the
compound glove container (from glove box) the
paraphrase “a container intended for gloves” in-
stead of “a container that contains gloves,” which
should be expected if the model retains the same
semantic relation of the original compound. From
a qualitative analysis, we observed a tendency for
the model to answer with the PURPOSE category
instead of the appropriate one; indeed, this cate-
gory gets the highest number of correct answers
among the four classes (1-shot: .82; 3-shot: .53).

5 General Discussion

This paper evaluated recent LLMs on their ability
to interpret Noun-Noun compounds and, specif-
ically, to correctly identify the semantic relation

underlying existing and novel compounds.
For the interpretation of existing compounds

(LNCs), we released a dataset that assembles sev-
eral linguistic and conceptual features associated
with each compound, extracted from previous re-
sources or added by the authors (concreteness, se-
mantic type, semantic relation from different clas-
sifications) together with a limited set of para-
phrases generated from Pepper (2022)’s classifi-
cation. LLMs accuracy was tested on both the
Surprisal scores and metalinguistic knowledge ex-
tracted by prompting strategies. In both set-
tings, the models showed different performance
levels in the identification of different semantic
relations. Some relations like PRODUCTION
are easy to recognize; that is, its paraphrase is
the most expected (considering Surprisal scores)
and more frequently identified in a metalinguistic
prompt task. Moreover, compounds characterized
by higher concreteness were interpreted more ac-
curately overall, as hypothesized. This effect may
be explained by the so-called concreteness effect
(Jessen et al., 2000), which suggests that concrete
concepts are processed faster and more easily than
abstract ones.

Previous studies reported that LLMs gener-
ate compound definitions that highly resemble
human-generated paraphrases, reaching an almost
perfect performance. However, the analyses pre-
sented here reveal that they are not as perfect when
asked to identify the correct paraphrase, given al-
ternatives. Our outcomes confirm what was ob-
served by Coil and Shwartz (2023): LLMs’ perfor-
mance can largely be attributed to parroting defi-
nitions or parts of definitions extracted from the
training corpora. However, it is unclear to what ex-
tent LLMs extract the relational linguistic patterns
they learn from corpora and use them to hypoth-
esize about the most likely relationship underpin-
ning a noun compound. In other words, while the
models can somehow interpret the semantic rela-
tion underlying compounding, there is still a ques-
tion far from being completely answered: what
linguistic properties make compounds more or
less difficult to interpret by LLMs? For this rea-
son, we believe that more effort should be made in
designing a comprehensive dataset of noun-noun
compounds annotated with different factors influ-
encing the plausibility of the noun compounds.

The second experiment represents the first at-
tempt to model novel compounds to understand
LLMs’ abilities to abstract and transfer knowl-



edge. According to previous studies, the interpre-
tation of a novel combination relies on previous
language experience (Gagné and Shoben, 1997,
2002; Gagné and Spalding, 2006a, among oth-
ers). That is, people are able to interpret novel
compounds by abstracting from their knowledge
of past experiences with similar conceptual com-
binations, which provide an analogical basis for
the production and interpretation of novel com-
pounds (Krott, 2009) 7. We manipulated a subset
of lexicalized compounds by replacing the mod-
ifier or the head word with a hypernym and ob-
served how much harder it is for the LLMs to in-
terpret the generated compounds. As expected,
language models are challenged by this task, but
we observe that they still look for a suboptimal so-
lution. For instance, they choose the PURPOSE
relation, which has a more general paraphrase (in-
dended for) than other relations (such as LOCA-
TION or CONTAINER). We believe that this task
could provide a window into a specific aspect of
the creative abilities of LLMs.

In conclusion, the present study illustrates that
there are still questions unanswered regarding
how LLMs interpret compounding. Future works
will focus on expanding both the LNC and the
NNC datasets, including more linguistic features
and evaluating the acceptability of selected para-
phrases with human judgments.
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Limitations

The work focuses only on English The present
dataset and work are focused only on English.
Expanding the dataset to other languages would
be beneficial, but we currently lack the same
amount of resources for other languages anno-
tated with the same amount of linguistic infor-
mation, such as concreteness ratings and seman-
tic relations. However, we chose Pepper (2022)
classification precisely because it has been imple-
mented to be suitable across languages, and the
Bourquifier templates could be easily converted
into other languages. Additionally, the method-
ology presented to generate novel compounds
could be replicated for other languages by relying
on language-specific WordNet versions released
within the OpenMultiWordNet project (Bond and
Paik, 2012; Bond et al., 2016), accessible through
the NLTK package.

Prompting strategies are conservative For the
present study, we evaluated models in a conser-
vative setting by using a low temperature. Fur-
ther studies could investigate how the same mod-
els with higher temperatures answer, that is, how
augmenting the linguistic creativity of LLMs af-
fects models’ performance on compound inter-
pretations. An additional limitation concerns the
prompt used. We evaluated all LLMs on the
question “Which is the most likely description
of COMPOUND?” followed by a list of possible
paraphrases. However, we did not test whether
other questions could improve the models’ accu-
racy, nor did we explore whether different ex-
amples within the prompt could yield varied out-
comes. Finally, the examples presented in one-
and few-shot settings are the same independently
of whether the target question has the same seman-
tic relation as the prompt. This could, of course,
affect the final results. For time and computation
constraints, we did not test how the models behave
with different semantic relations in the prompt.

Comparing LLMs’ performance over humans’
judgments A limitation of this dataset comes
from the annotations of Tratz (2011). We used an
aggregated version of this dataset, so it is impos-
sible to determine the degree of agreement across
annotators for each compound. However, litera-
ture reports that some expressions show greater
entropy of conceptual relations, i.e., greater com-
petition between possible underlying semantic re-



lations (Benjamin and Schmidtke, 2023). This in-
formation could be useful for a more fine-grained
evaluation of LLMs’ performance. A related con-
sideration is that, when collecting paraphrases for
compounds, there can be various relationships
with different degrees of acceptability (Spald-
ing and Gagné, 2014; Benjamin and Schmidtke,
2023), while we simplify by assuming there is
only one correct relationship. While it was out
of the scope of the present paper, we would fur-
ther investigate these hypotheses and collect the
acceptability of paraphrases for both lexicalized
and novel compounds.

Ethics Statement

Data The datasets used to build our LNC
dataset are publicly available online. Con-
creteness ratings of Muraki et al. (2023)
can be downloaded from the authors’ OSF
project: https://osf.io/ksypa/. For
the Tratz (2011) dataset, we used the data
released by Shwartz and Dagan (2018) at
https://github.com/vered1986/panic/tree/
master/classification/data. (Nakov, 2008b)
dataset is available from the SIGLEX-MWE
archive (https://multiword.sourceforge.
net/PHITE.php%3Fsitesig%3DFILES%26page%
3DFILES_20_Data_Sets) under Creative Com-
mons Attribution 3.0 Unported License. We will
release all additional data and code used in the
present experiment.

Models For reasons of replicability, we used
only open-access models available from hugging-
face. Given a limited GPU, we relied on 7 bil-
lion parameter models and used quantization tech-
niques to reduce memory and computational costs
(we used the bitsandbytes library).

There are well-known ethical concerns about
LLMs, which have been shown to produce fac-
tually incorrect output, which may generate of-
fensive content if prompted with certain inputs.
Instruction-tuned LLMs have been trained to re-
duce the harm of model responses, as we also
observed in our analyses. For instance, when
asked to choose the correct paraphrase, the Llama-
2 answered: “It is important to clarify that child
pornography is a criminal and morally reprehen-
sible activity. Therefore, none of the descriptions
provided accurately describe child pornography.
Instead, it is essential to understand that child
pornography involves the production..”. However,

some responses may still contain offensive con-
tent. Finally, any demonstrations of LLMs’ lin-
guistic generalizations should not imply that they
are safe to use or that they can be expected to be-
have in a way that is aligned with human prefer-
ences and values.
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A Experiment 1-Prompt Example

We report below an example of the prompt used as
an example (1-shot setting) for the LNC dataset.

Which is the most likely description of "olive
oil"?

1. an oil that uses olives;

2. an oil that is part of olives;

3. an oil that olives produce;

4. an oil that produces olives;

5. an oil that contains olives;

6. an oil that is about olives;

7. an oil that is composed of olives;

8. an oil that is located in olives;

9. an oil intended for olives

We report below an example of the prompt
used as an example (1-shot setting) for the Nakov
dataset.

Which is the most likely description of
“pumpkin pie"?

1. a pie that uses a pumpkin;

2. a pie that is caused by a pumpkin;

3. a pie that is made from a pumpkin;

4. a pie that gives a pumpkin;

5. a pie that comes from a pumpkin;

6. a pie that is made by a pumpkin;

7. a pie that causes a pumpkin;

8. a pie that is a pumpkin;

9. a pie that involves a pumpkin

B Experiment 1-Additional Analyses

As for the LNC dataset, we plot the distribution of
semantic relations with the lowest Surprisal scores
inside each class for the Nakov dataset. Figure 3
allows us to grasp common errors across LLMs.



Figure 3: Navok dataset: Distribution of semantic relations with the lowest Surprisal scores for each relation.

C Experiment 2 - Additional results

NNC
sameHead sameMod

BERT-large .219 .167
GPT2-xl .100 .094
Llama-2 (Base) .133 .109
Falcon (Base) .217 .125
Mistral (Base) .117 .125
Llama-2 (Instruct) .283 .141
Falcon (Instruct) .150 .141
Mistral (Instruct) .283 .156

Table 8: Surprisal accuracy of instruction-based mod-
els on the NNC dataset, distinguishing when we sub-
stitute the first word (sameHead) or the second word
(sameMod) of a compound with a hypernym.
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